Robust Single‐Walled Carbon Nanotube‐Infiltrated Carbon Fiber Electrodes for Structural Supercapacitors: from Reductive Dissolution to High Performance Devices

Author:

Senokos Evgeny1ORCID,Anthony David B.1,Rubio Noelia12,Ribadeneyra Maria Crespo34,Greenhalgh Emile S.5,Shaffer Milo S. P.16

Affiliation:

1. Department of Chemistry Imperial College London 82 Wood Lane, White City Campus London W12 0BZ UK

2. Department of Organic and Inorganic Chemistry University of Alcalá 28802 Madrid Spain

3. School of Materials Science and Engineering Queen Mary University of London Mile End Road London E1 4NS UK

4. Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK

5. Department of Aeronautics Imperial College London South Kensington Campus London SW7 2AZ UK

6. Department of Materials Imperial College London South Kensington Campus London SW7 2AZ UK

Abstract

AbstractMultifunctional electrodes for structural supercapacitors are prepared by vacuum infiltration of single‐walled carbon nanotubes (SWCNTs) into woven carbon fibers (CFs); the use of reductive charging chemistry to form nanotubide solutions ensured a high degree of individualization. The route is highly versatile, as shown by comparing four different commercial nanotube feedstocks. In film form, the pure nanotubide networks (“buckypapers”) are highly conductive (up to 2000 S cm−1) with high surface area (>1000 m2 g−1) and great electrochemical performance (capacitance of 101 F g−1, energy density of 27.5 Wh kg−1 and power density of 135 kW kg−1). Uniformly integrating these SWCNT networks throughout the CF fabrics significantly increased electrical conductivity (up to 318 S cm−1), surface area (up to 196 m2 g−1), and in‐plane shear properties, all simultaneously. The CNT‐infiltrated CFs electrodes exhibited intrinsically high specific energy (2.6–4.2 Wh kg−1) and power (6.0–8.7 kW kg−1) densities in pure 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM TFSI) electrolyte. Multifunctional structural supercapacitors based on CNT‐coated CFs offer a substantial increase in capacitive performance while maintaining the tensile mechanical properties of the as‐received CF‐based composite. This non‐damaging approach to modify CFs with highly graphitic, high surface area nanocarbons provides a new route to structural energy storage systems.

Funder

European Office of Aerospace Research and Development

Royal Academy of Engineering

Engineering and Physical Sciences Research Council

Royal College of Physicians and Surgeons of Glasgow

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3