Biomimetic Approach for Sustainable Magnetite Nanoparticle Synthesis Using Polycations

Author:

Kuhrts Lucas1ORCID,Prévost Sylvain2ORCID,Scoppola Ernesto1ORCID,Hirt Ann‐Marie3ORCID,Faivre Damien14ORCID

Affiliation:

1. Max Planck Institute of Colloids and Interfaces Department of Biomaterials Am Mühlenberg 1 14476 Potsdam Germany

2. Institut Laue‐Langevin – The European Neutron Source 71 avenue des Martyrs, CS 20156 Grenoble Cedex 9 38042 France

3. ETH Zürich Dep. of Earth Science Sonneggstrasse 5 Zürich 8092 Switzerland

4. Aix‐Marseille University, CNRS, CEA, BIAM Saint‐Paul‐lez‐Durance 13115 France

Abstract

AbstractMagnetotactic bacteria produce magnetite nanoparticles called magnetosomes at ambient conditions via a protein‐stabilized transient amorphous precursor to obtain precise control over particle size and morphology. In a bioinspired approach, such biomineralization processes are emulated, mimicking proteins involved in magnetosome formation using the positively charged analog poly‐L‐arginine. While the additive is expensive, it remains elusive whether the change in magnetite formation mechanism arises solely from the polymer's cationic nature. This study uses different mass‐produced and sustainably sourced polycations to induce the biomineralization‐reminiscent formation of magnetite nanoparticles. These findings present how to achieve control over nanoparticle size (from 10 to 159 nm) and morphology (compact and sub‐structured) as well as magnetic properties (superparamagnetic, stable‐single‐domain, vortex state) at ambient temperature and pressure using these additives. Furthermore, the formation of large nanoparticles with the addition of poly(diallyldimethylammonium chloride) (PDADMAC) at low alkalinity highlights how magnetotactic bacteria may produce magnetite nanoparticles under similar conditions. Confirming the polycations' ability to electrostatic stabilize amorphous ferrihydrite, it is anticipated that parametric in vitro studies on polymer properties will provide valuable insights into magnetite biomineralization and aid in rationally designing magnetic nanomaterials.

Funder

Deutsche Forschungsgemeinschaft

Commissariat à l'Énergie Atomique et aux Énergies Alternatives

Minerva Foundation

Max-Planck-Gesellschaft

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3