Red Phosphorus Grafted High‐Index (116) Faceted Anatase TiO2 for Z‐Scheme Photocatalytic Pure Water Splitting

Author:

Zhu Yukun1ORCID,Ren Jun2,Huang Guiqing1,Dong Chung‐Li3,Huang Yu‐Cheng3,Lu Ping1,Tang Hua1,Liu Yiming45,Shen Shaohua6ORCID,Yang Dongjiang1

Affiliation:

1. School of Environmental Science and Engineering State Key Laboratory of Bio‐fibers and Eco‐textiles Qingdao University Qingdao 266071 China

2. School of Chemistry and Chemical Engineering North University of China Taiyuan 030051 China

3. Department of Physics Tamkang University New Taipei City Tamsui 25137 Taiwan

4. College of Environmental Science and Engineering Taiyuan University of Technology Taiyuan 030024 China

5. School of Chemical and Biological Engineering Taiyuan University of Science and Technology Taiyuan 030024 China

6. International Research Center for Renewable Energy State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 China

Abstract

AbstractRed phosphorus (RP) is an emerging visible‐light‐responsive photocatalyst, yet the rapid charge recombination has limited photocatalytic hydrogen production activity. In this work, a Z‐scheme heterostructure with RP nanolayer coated on high‐index (116) faceted anatase TiO2 nanoparticles (TiO2@RP) is designed and fabricated via chemical vapor deposition. Compared with pristine TiO2 and RP, the optimized TiO2@RP Z‐scheme heterostructure exhibits a significantly boosted photocatalytic activity for pure water splitting, with hydrogen evolution rate reaching 12.9 µmol·h−1, under simulated solar light irradiation. The strong interfacial interaction and staggered band alignment between (116) faceted TiO2 and RP result in the formation of built‐in electric field, which can drive the directional charge migration from the conduction band (CB) of TiO2 to the valance band (VB) of RP under light irradiation, with photoelectrons and holes of high redox ability maintained at the CB of RP and the VB of TiO2, respectively. This well‐designed heterostructure greatly promotes photogenerated charge separation and migration via a direct Z‐scheme charge transfer pathway.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3