Dynamic High‐Capacity Structural‐Color Encryption Via Inkjet Printing and Image Recognition

Author:

Li Rujun12,Li Kaixuan1,Deng Xiao1,Jiang Congzhi3,Li An1,Xue Luanluan12,Yuan Renxuan12,Liu Quan12,Zhang Zongbo14,Li Huizeng1,Song Yanlin12ORCID

Affiliation:

1. Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

2. University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. College of Design and Engineering National University of Singapore Singapore Singapore

4. Key Laboratory of Science and Technology on High‐tech Polymer Materials Chinese Academy of Sciences Beijing 100190 P. R. China

Abstract

AbstractStimuli‐responsive structural‐color materials have received widespread attention in information encryption due to the significant color changes under different stimuli. However, the trade‐off between the capacity of information input, security level, cost, and large‐area manufacturing greatly limits the application of structural colors in encryption. Herein, dynamic high‐capacity and high‐resolution encryption are achieved by implementing printed total internal reflection (TIR) structural color and computer‐aided image recognition. The printed TIR microstructures are prepared with relative humidity (RH) responsive polymer, which form a heterogeneous wettability system, and can exhibit vibrant color variation with humidity. As the implemented RH is changed, the printed microstructures will expand or shrink precisely, enabling a full‐color modulation across the visible light range. With the color change, each structural‐color pixel can be specifically encoded, allowing for this to encrypt dynamic information within the same pattern at different RHs. Furthermore, This study can precisely integrates tremendous different pixels and easily prepare various encrypted patterns, which guarantee the high‐capacity information input in a low‐cost way. Moreover, through computer programming and algorithm reading, the structural‐color patterns can be decoded and decrypted in real‐time, thus offering great potential for further encryption, anti‐counterfeiting, multiplexing encoding, and data storage.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Beijing Nova Program

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Beijing National Laboratory for Molecular Sciences

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3