Electrochemical Ultrathin Metal‐Atomic Layer Deposition for Silica Microenvironment‐Assisted Cu‐Based Catalysis

Author:

Jeevanandham Sampathkumar12,Maji Ankur12,Acharya Anubhab12,Kumari Nitee12,Gu Byeong Su12,Yoon Youngkwan2,Choi Hee Cheul2,Kumar Amit12,Lee In Su123ORCID

Affiliation:

1. Creative Research Initiative Center for Nanospace‐confined Chemical Reactions (NCCR) Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea

2. Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea

3. Institute for Convergence Research and Education in Advanced Technology (I‐CREATE) Yonsei University Seoul 03722 South Korea

Abstract

AbstractReplacing commonly used precious and rare noble metals by the abundant copper (Cu)‐based catalysts is highly desired for sustainable fine‐chemical synthesis. However, in the lack of model platforms, complex surface chemistry of randomly nanostructured bulk Cu is notoriously challenging to understand and control. By synthesizing ultrathin 2D‐Cu layer sandwiched inside the bilayer silica template, an unusual but critical cooperative role of Lewis basic amino‐silica microenvironment for [Cu]‐catalyzed selective hydrogenation of unsaturated C─C bonds in diverse alkynes, ene‐ynes, and α,β‐unsaturated (alkene) Michael acceptors is discovered. Newly developed nanospace‐confined electrochemical (eChem) atomic layer deposition (NC‐EAD) technique afforded < 2 nm ultrathin Cu(0)‐layer intimately covered inside silica envelope. This model platform aided the detailed mechanistic study deciphering the unexpected finding – originally non‐reactive Cu‐film, just by a simple silica coating step, turning into an efficient catalyst for scalable fine‐chemical synthesis. The concept of reactive metal surface‐microenvironment manipulation, presents a new paradigm for controlling complex molecular interactions in heterogeneous catalysts.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3