Regulating the Conformational and Macroscopic Properties of Inorganic Nanowires by Polymer Grafts

Author:

Liu Jing1,Dong Wenhao1,Xia Yifan1,Zheng Di1,Duan Xiaozheng12,Nie Zhihong13ORCID

Affiliation:

1. State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecule Science Fudan University Shanghai 200438 P. R. China

2. State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China

3. Yiwu Research Institute of Fudan University Yiwu 322000 P. R. China

Abstract

AbstractUltrathin inorganic nanowires are an emerging class of building blocks for creating functional materials and devices, but there remains challenging to fine‐tune the structure and property of the nanowires at the molecular level. Here, this work shows that ultrathin polymer‐grafted gold nanowires (PG‐AuNWs) can exhibit bottlebrush polymer‐like physical behaviors and macroscopic properties. The hybrid PG‐AuNWs in solutions show polymer‐like viscoelasticity which can be finely regulated by controlling the structural parameters (e.g., length of the AuNWs, molecular weight of grafted polymers) of the PG‐AuNWs, the environmental conditions (e.g., temperature, solvent compositions), and the aging time. Furthermore, this work unravels at the molecular level that the conformational properties (e.g., contour length, persistence length, and mean‐squared radius of gyration) of the PG‐AuNWs can be correlated to their structural parameters following similar power‐law relations as molecular bottlebrush polymers. This work bridges the fundamental gap between polymer‐like inorganic nanowires and bottlebrush polymers, thus accelerating the development of new nanowire‐based functional hybrid materials and devices.

Funder

National Natural Science Foundation of China

State Key Laboratory of Molecular Engineering of Polymers

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3