Resistive Switching Effect in Ag‐poly(ethylene Glycol) Nanofluids: Novel Avenue Toward Neuromorphic Materials

Author:

Nikitin Daniil1ORCID,Biliak Kateryna1ORCID,Pleskunov Pavel1ORCID,Ali‐Ogly Suren1ORCID,Červenková Veronika1ORCID,Carstens Niko2ORCID,Adejube Blessing2ORCID,Strunskus Thomas23ORCID,Černochová Zulfiya4ORCID,Štěpánek Petr4ORCID,Bajtošová Lucia5ORCID,Cieslar Miroslav5ORCID,Protsak Mariia1ORCID,Tosca Marco16ORCID,Lemke Jonathan2,Faupel Franz23ORCID,Biederman Hynek1ORCID,Vahl Alexander23ORCID,Choukourov Andrei1ORCID

Affiliation:

1. Faculty of Mathematics and Physics Department of Macromolecular Physics Charles University V Holešovičkách 2 Prague 18000 Czech Republic

2. Chair for Multicomponent Materials Department of Material Science Kiel University Kaiserstraße 2 D‐24143 Kiel Germany

3. Kiel Nano Surface, and Interface Science KiNSIS Kiel University Christian‐Albrechts Platz 4 D‐24118 Kiel Germany

4. Institute of Macromolecular Chemistry CAS Heyrovského nám. 2 Prague 16206 Czech Republic

5. Faculty of Mathematics and Physics Department of Physics of Materials Charles University Ke Karlovu 5 Prague 12116 Czech Republic

6. ELI Beamlines Facility The Extreme Light Infrastructure ERIC Za Radnicí 835 Dolní Břežany 25241 Czech Republic

Abstract

AbstractConventional computation techniques face challenges of deviations in Moore's law and the high‐power consumption of data‐centric computation tasks. Neuromorphic engineering attempts to overcome these issues by taking inspiration from neuron assemblies, ranging from distributed synaptic plasticity through orchestration of oscillator‐like action potential toward avalanche dynamics. Although solid networks of nanoparticles (NPs) are proven to replicate fingerprints of criticality and brain‐like dynamics, the aspect of dynamic spatial reconfigurations in the connectivity of networks remains unexplored. In this work, Ag/poly(ethylene glycol) (PEG) nanofluids are demonstrated as potential systems to mimic the spatio‐temporal reconfiguration of network connections. The nanofluids are prepared by directly loading Ag NPs from the gas aggregation cluster source into liquid PEG. The NPs exhibit a negative zeta potential in PEG; if the potential difference is applied between two electrodes submerged in this nanofluid, the NPs migrate toward the anode, accumulate in its vicinity, and form a conductive path. Spikes of electric current passing through the path are detected, accompanied by resistive switching phenomena, similar to the random switching dynamics in solid NPs networks. The unique behavior of Ag/PEG nanofluids makes them promising for the realization of spatio‐temporal reconfigurations in network topologies with the potential to transition to 3D.

Funder

Grantová Agentura České Republiky

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3