Interstitial Cu: An Effective Strategy for High Carrier Mobility and High Thermoelectric Performance in GeTe

Author:

Yin Liang‐Cao1,Liu Wei‐Di23ORCID,Li Meng3,Wang De‐Zhuang1,Wu Hao1,Wang Yifeng4,Zhang Lixiong1,Shi Xiao‐Lei3,Liu Qingfeng1,Chen Zhi‐Gang3ORCID

Affiliation:

1. State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 China

2. Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QL 4072 Australia

3. School of Chemistry and Physics Queensland University of Technology Brisbane QL 4000 Australia

4. College of Materials Science and Engineering Nanjing Tech University Nanjing 211816 China

Abstract

AbstractDense point defects can strengthen phonon scattering to reduce the lattice thermal conductivity and induce outstanding thermoelectric performance in GeTe‐based materials. However, extra point defects inevitably enlarge carrier scattering and deteriorate carrier mobility. Herein, it is found that the interstitial Cu in GeTe can result in synergistic effects, which include: 1) strengthened phonon scattering, leading to ultralow lattice thermal conductivity of 0.48 W m−1 K−1 at 623 K; 2) weakened carrier scattering, contributing to high carrier mobility of 80 cm2 V−1 s−1 at 300 K; 3) optimized carrier concentration of 1.22 × 1020 cm−3. Correspondingly, a high figure‐of‐merit of ≈2.3 at 623 K can be obtained in the Ge0.93Ti0.01Bi0.06Te‐0.01Cu, which corresponds to a maximum energy conversion efficiency of ≈10% at a temperature difference of 423 K. This study systematically investigates the doping behavior of the interstitial Cu in GeTe‐based thermoelectric materials for the first time and demonstrates that the localized interstitial Cu is a new strategy to enhance the thermoelectric performance of GeTe‐based thermoelectric materials.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3