Surface Defects Reinforced Polymer‐Ceramic Interfacial Anchoring for High‐Rate Flexible Solid‐State Batteries

Author:

Fu Yanda1,Yang Kai2,Xue Shida1,Li Weihan3,Chen Shiming1,Song Yongli1,Song Zhibo1,Zhao Wenguang1,Zhao Yunlong2,Pan Feng1,Yang Luyi1,Sun Xueliang3ORCID

Affiliation:

1. School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 China

2. Advanced Technology Institute University of Surrey Guildford Surrey GU2 7XH UK

3. Department of Mechanical and Materials Engineering University of Western Ontario London ON N6A 5B9 Canada

Abstract

AbstractHigh Li+ conductivity, good interfacial compatibility and high mechanical strength are desirable for practical utilization of all‐solid‐state electrolytes. In this study, by introducing Li6.4La3Zr1.4Ta0.6O12 (LLZTO) with surface defects into poly(ethylene oxide) (PEO), a composite solid electrolyte (OV‐LLZTO/PEO) is prepared. The surface defects serve as anchoring points for oxygen atoms of PEO chains, forming a firmly bonded polymer‐ceramic interface. This bonding effect effectively prevents the agglomeration of LLZTO particles and crystallization of PEO domains, forming a homogeneous electrolyte membrane exhibiting high mechanical strength, reduced interfacial resistance with electrodes as well as improved Li+ conductivity. Owing to these favorable properties, OV‐LLZTO/PEO can be operated under a high current density (0.7 mA cm−2) in a Li–Li symmetric cell without short circuit. Above all, solid‐state full‐cells employing OV‐LLZTO/PEO deliver state‐of‐the‐art rate capability (8 C), power density and capacity retention. As a final proof of concept study, flexible pouch cells are assembled and tested, exhibiting high cycle stability under 5 C and excellent safety feature under abusive working conditions. Through manipulating the interfacial interactions between polymer and inorganic electrolytes, this study points out a new direction to optimizing the performance of all‐solid‐state batteries.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3