Affiliation:
1. Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications Henan Normal University Xinxiang 453007 China
2. School of Physics Henan Normal University Xinxiang 453007 China
3. School of Materials Science and Engineering Henan Normal University Xinxiang 453007 China
4. Institute of Physics Henan Academy of Sciences Zhengzhou 450046 China
Abstract
AbstractArtificial synaptic devices (ASDs) are attracting widespread attention as highly promising components for use in complex neuromorphic systems, playing crucial roles in addressing the challenges posed by the conventional von Neumann architecture. However, the instabilities of ASDs in high‐temperature environments diminish the reliabilities of the device performances, significantly inhibiting their practical application. Herein, a highly reliable 2D MoS2/GaPS4 ASD that maintains its functionality even after exposure to 400 °C is proposed. Moreover, due to the enhanced charge‐trapping effect of the GaPS4 layer, the memory window expands from an initial 42 to 55 V, accompanied by a substantial on/off ratio of 105, low off‐leakage current of 10−11 A, and high number of endurance cycles (103). The device effectively simulates various biological synaptic functions via electric and light stimulation. Notably, the high electric and light paired‐pulse facilitation indices suggest an exceptional synaptic performance. The findings introduce a novel approach to high‐temperature neuromorphic applications via defect engineering.
Funder
National Natural Science Foundation of China
Innovation Scientists and Technicians Troop Construction Projects of Henan Province
Natural Science Foundation of Henan Province
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献