Affiliation:
1. Nanomaterials and Polymer Nanocomposites Laboratory School of Engineering University of British Columbia Kelowna BC V1V 1V7 Canada
2. Bioproducts Institute Department of Chemical & Biological Engineering Department of Chemistry and Department of Wood Science The University of British Columbia 2360 East Mall Vancouver BC V6T 1Z3 Canada
Abstract
AbstractInterfacial jamming and assembly, facilitated by nanoparticle surfactant (NPS) complexation, demonstrate a remarkable efficacy in stabilizing multiphase systems, evident in structured liquid streams and structured Pickering emulsions. However, the utilization of structured liquid templates to tune multiple porosity levels of ultra‐flyweight aerogels is barely discussed. In this study, a structured Pickering emulsion is prepared through mixing an aqueous dispersion of graphene oxide (GO) with an organic (hexane) solution containing an active ligand. The emulsion is jetted into the same organic phase, resulting in “dual jamming”. This process produced worm‐like aerogels with porosity that can be precisely tailored at four different levels: i) voids between filaments, ii) cavities produced by evaporation of trapped hexane droplets, iii) pores generated from sublimation of water in the bulk of GO emulsion, and iv) microscopic regions trapped between GO flakes or fractures/holes within GO nanosheets. These aerogels exhibit ultra‐low density (1.67–2.3 mg cm−3), high compressibility, and shape recovery. The multi‐scale porosity, created by structural design, endows aerogels with a record‐level fluid sorption capacity (e.g., 615 g g−1 for chloroform). Additionally, the aerogels demonstrate an absorption‐dominant electromagnetic interference (EMI) shielding mechanism, achieving a remarkable specific EMI shielding (SSE/t) of 67 178 dB cm2 g−1.
Funder
Natural Sciences and Engineering Research Council of Canada
Canada Foundation for Innovation
Canada Excellence Research Chairs, Government of Canada
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献