Metallic Particles‐Induced Surface Reconstruction Enabling Highly Durable Zinc Metal Anode

Author:

Liu Wen1,Zhao Qiwen1,Yu Huaming1ORCID,Wang Han1,Huang Shaozhen1,Zhou Liangjun1,Wei Weifeng1,Zhang Qichun2,Ji Xiaobo3,Chen Yuejiao1ORCID,Chen Libao1

Affiliation:

1. State Key Laboratory of Powder Metallurgy Central South University Changsha 410083 P. R. China

2. Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 P. R. China

3. College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China

Abstract

AbstractAqueous zinc batteries usher in a renaissance due to their intrinsic security and cost effectiveness, bespeaking vast application foreground for large‐scale energy storage system. However, uncontrolled dendrite growth along with hydrogen evolution severely restricts its reversibility and stability for practical application. Herein, the surface of Zn metal is reconstructed with metallic particles (In, Sn, In0.2Sn0.8) to diminish surface defects and regulate Zn deposition behavior. The alloyed In–Sn greatly activates the Zn surface for lower Zn adsorption energy barrier to expedite plating kinetics and confine Zn aggregation. Dense and uniform deposition of Zn on the reconstructed surface significantly prevents the Zn substrate from dendrites growth for catastrophic damage. Meanwhile, alloy layer embodies high hydrogen evolution overpotential, ensuring high plating and stripping efficiency for Zn anode. Consequently, In0.2Sn0.8 reconstructed surface realizes long‐term lifespan up to 1800 h with low polarization (12 mV) at the condition of 1 mA cm−2 and 1 mAh cm−2. When paired with sodium vanadate (NVO) cathode, the full cell steady operates for a high‐capacity retention of 94.0% after 5000 cycles at 5 A g−1. This study provides new insights into the surface‐defects dependent Zn deposition process and offers a guide for constructing stable surface for dendrite‐free Zn growth.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3