3D‐Printed Robust Dual Superlyophobic Ti‐Based Porous Structure for Switchable Oil/Water Emulsion Separations

Author:

Yang Yu1,Ren Zhiying1ORCID,Zhou Chunhui1,Lin Youxi1,Hou Linxi1,Shi Linwei1,Zhong Shuncong1

Affiliation:

1. School of Mechanical Engineering and Automation Institute of Metal Rubber & Vibration Noise Fuzhou University Fuzhou 350116 China

Abstract

AbstractSmart surfaces with responsive wettability are unstable, and depend upon continuous external stimuli, which limits their widespread application in switchable oil/water emulsions separations. In this study, a Ti‐based 3D porous structure (SLM‐3DTi) is printed using advanced selective laser melting (SLM) technology for the switchable separation of oil/water emulsion. With the assistance of the computer program, porous structure and re‐entrant texture can be easily designed and printed in one step. Without any continuous external stimulus, the wettability of SLM‐3DTi can be reversibly switched between underwater superoleophobicity and underoil superhydrophobicity simply by drying and washing cycles. The SLM‐3DTi achieves switchable surfactant‐stabilized oil‐in‐water emulsion (SSE(o/w)) and surfactants‐stabilized water‐in‐oil emulsion (SSE(w/o)) separation with purity above 99.8% at a flux of more than 2000 L m−2 h−1. In addition, the re‐entrant texture of the SLM‐3DTi surface is formed with the partially melting powder particles on the part contour, which has much stronger mechanical durability than any binder. Furthermore, SLM‐3DTi has excellent corrosion resistance due to the material properties of Ti. More importantly, based on the visualization analysis of the simulation, the mechanism of SLM‐3DTi emulsion separation is further elucidated. Therefore, SLM‐3DTi has broad practical application potential for high‐flux, high‐purity, and switchable oil/water emulsion separation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3