Bilayered Oxide Heterostructure‐Mediated Capacitance‐Based Neuroplasticity Modulation for Neuromorphic Classification

Author:

Lin Pei‐En1,Chen Kuan‐Ting1ORCID,Chaurasiya Rajneesh1ORCID,Le Hoang‐Hiep2,Cheng Chia‐Hao1,Lu Darsen D.2ORCID,Chen Jen‐Sue1ORCID

Affiliation:

1. Department of Materials Science and Engineering National Cheng Kung University Tainan 701 Taiwan

2. Institute of Microelectronics National Cheng Kung University Tainan 701 Taiwan

Abstract

AbstractTo overcome the limitations of memristors in neuromorphic computation, memcapacitors are gaining attention owing to their scalability, low power dissipation, and sneak‐path‐free nature. This study focuses on the progressive capacitive switching of a bilayered metal‐oxide WOx/ZrOx heterojunction memcapacitor. To gain a better understanding of the interfacial switching behavior, density functional theory simulations are used to analyze the defects and oxide formation energy of the heterostructure. The memcapacitive characteristics are studied using the capacitance–voltage curves under different voltage‐sweeping conditions and impedance analysis. The memcapacitive characteristics can be attributed to the trapping of carriers in the depletion region of the WOx/ZrOx heterojunction, which is modulated by the relocation of oxygen vacancies under the electric field. The device exhibits a wider dynamic range of capacitance values than other metal‐oxide memcapacitors reported, and demonstrates versatile synaptic functions, such as potentiation/depression behavior, paired‐pulse facilitation, experience‐dependent plasticity, and learning–relearning behavior. Furthermore, an accuracy of 99.01% is achieved in handwritten digit classification using the capacitive state as the weight through a computing‐in‐memory emulator. The results affirm the applicability of the WOx/ZrOx memcapacitor in future capacitive neural networks.

Funder

National Science and Technology Council

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3