Π‐Bridge Modulations in D–π–A Conjugated Microporous Polymers to Facilitate Charge Separation and Transfer Kinetics for Efficient Photocatalysis

Author:

Li Chunlei1,Xu Hetao1,Xiong Hao2,Xia Shuling1,Peng Xu2,Xu Fei2,Chen Xiong1ORCID

Affiliation:

1. State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry and Key Laboratory of Molecular Synthesis and Function Discovery Fuzhou University Fuzhou 350116 P. R. China

2. State Key Laboratory of Solidification Processing Center for Nano Energy Materials School of Materials Science and Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China

Abstract

AbstractThe burgeoning field of conjugated microporous polymers (CMPs) has generated widespread interest due to their potential as photocatalysts for hydrogen production from water. Nevertheless, their photocatalytic performance is sometimes hindered by inadequate charge separation and transfer, coupled with rapid charge recombination. Herein, a strategy to enhance photocatalytic performance via the customization of π‐bridges through the modulation of heteroatoms in a series of donor‐π‐acceptor (D‐π‐A) CMPs is proposed. This affords optimized energy levels and improved charge separation and transfer, thus boosting photocatalytic efficiency. Among various heteroatom substitutions, S‐doped CMP (10 mg) demonstrates the highest photocatalytic hydrogen evolution rate of 203 µmol h−1 (AQY450nm = 7.4%) under visible light irradiation. Subsequent experimental analysis reveals its superior photocatalytic performance can be largely related to its minimized exciton binding energy, facilitated charge transfer efficiency, and impeded charge recombination among these heteroatom‐doped D‐π‐A CMPs. This research paves the way for the rational design and modification of organic semiconductors for advanced solar‐driven photocatalysis by promoting charge separation and transfer.

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3