Optimal Molecular Configuration of Electrolyte Additives Enabling Stabilization of Zinc Anodes

Author:

Yang Yong1,Li Yanze1,Zhu Qizhen1,Xu Bin12ORCID

Affiliation:

1. State Key Laboratory of Organic–Inorganic Composites Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 China

2. Shaanxi Key Laboratory of Chemical Reaction Engineering School of Chemistry and Chemical Engineering Yan'an University Yan'an 716000 China

Abstract

AbstractFor the development of electrolyte additives as an effective strategy to improve the performance of zinc‐ion batteries (ZIBs), most researchers focus on the functional groups but overlook the crucial molecular configuration. Herein, six stereoisomers of 2,3,4,5‐tetrahydroxyvaleraldehyde with identical groups but various spatial arrangements are studied as the electrolyte additive in ZIBs. Based on the experimental analysis and theoretical calculations, the adsorption with Zn (002) plane is found to be an important dominant for the stereoisomer to enhance the Zn anode performance. Among these stereoisomers, D‐Arabinose with preferential and strongest chemisorption effect modifies the anode/electrolyte interface most effectively, leading to the highest stability and reversibility of the Zn anode. The adsorbed D‐Arabinose shows multifunctional effects at the interface, which not only regulates the Zn2+ solvation structure and reconfigures the hydrogen bond framework, but also facilitates uniform Zn2+ deposition by promoting 3D Zn2+ diffusion and homogenizing the electric field. Therefore, with the D‐Arabinose additive in ZnSO4 electrolyte, the undesired Zn dendrite growth and side reactions including hydrogen evolution reaction, corrosion, and passivation are significantly limited during the Zn plating/stripping processes. This work proposes a new insight toward the optimal molecular configuration of additive designing for electrolyte engineering in stable ZIBs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3