21.41%‐Efficiency CsPbI3 Perovskite Solar Cells Enabled by an Effective Redox Strategy with 4‐Fluorobenzothiohydrazide in Precursor Solution

Author:

Duan Yuwei12ORCID,Wang Jungang1,Xu Dongfang1,Ji Peigen1,Zhou Hui1,Li Yong1,Yang Shaoming1,Xie Zhuang2,Hai Xiaohu1,Lei Xuruo1,Sun Rui1,Fan Zihao1,Zhang Ke1,Liu Shengzhong13,Liu Zhike1ORCID

Affiliation:

1. Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 China

2. College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China

3. Dalian National Laboratory for Clean Energy iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China

Abstract

AbstractTo simultaneously stabilize cesium lead triiodide (CsPbI3) precursor solution and passivate the defects in CsPbI3 film is greatly significant for achieving highly stable and efficient CsPbI3 perovskite solar cells (PSCs). Herein, an effective redox 4‐fluorobenzothiohydrazide (FBTH) is developed to stabilize the precursor solution and passivate iodine/lead‐related defects for high‐quality CsPbI3 film. The comprehensive research confirms that 1) a new compound FBTH‐I is obtained from an effective redox interaction between FBTH and molecular iodine (I2) in perovskite precursor solution, which can effectively impede the formation of I2 molecule and restrain I migration in perovskite film by forming N–H···I bond; 2) FBTH‐I can also passivate Pb‐related defects via forming S···Pb interaction. Consequently, the CsPbI3 PSC based on FBTH‐treated precursor solution exhibits a fascinating power conversion efficiency (PCE) of 21.41%, which is one of the highest PCE values among the reported pure CsPbI3 PSCs so far, and an outstanding stability against the harsh conditions, such as thermal annealing and continuous light‐illumination.

Funder

Key Research and Development Projects of Shaanxi Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3