Extreme pH‐Resistant, Highly Cation‐Selective Poly(Quaternary Ammonium) Membranes Fabricated via Menshutkin Reaction‐Based Interfacial Polymerization

Author:

Jeon Sungkwon1,Kim Hansoo1,Choi Juyeon1,Kim Jeong F.2,Park Ho Bum3,Lee Jung‐Hyun1ORCID

Affiliation:

1. Department of Chemical and Biological Engineering Korea University Seoul 02841 Republic of Korea

2. Department of Energy and Chemical Engineering Incheon University Incheon 22012 Republic of Korea

3. Department of Energy Engineering Hanyang University Seoul 04763 Republic of Korea

Abstract

AbstractMembrane‐based separation technologies have attracted significant interest from various industries owing to their high process efficiency. However, the wider applications of conventional polyamide (PA) thin‐film composite (TFC) membranes are limited by their poor pH stability and low cation selectivity, necessitating the development of membranes with advanced chemistries. Herein, an extreme pH‐resistant, highly cation‐selective TFC membrane is fabricated by synthesizing a crosslinked poly(quaternary ammonium) (PQA) selective layer on a polyethylene support via Menshutkin reaction‐based interfacial polymerization (Men‐IP). The Men‐IP process produces a thin, densely crosslinked, and positively charged PQA permselective layer without hydrolysis‐prone functional groups. The fabricated PQA membrane features a highly selective molecular density that significantly exceeds those of previously reported membranes with non‐PA chemistries. Moreover, the PQA membrane exhibits remarkably high rejection (>90%) and selectivity for divalent cations owing to the exceptionally strong positive charge imparted by its abundant cationic QA groups. More importantly, the PQA membrane displays ultrahigh pH stability under both extremely acidic (1.5 m H2SO4) and alkaline (5 m NaOH) conditions for 28 days. No other membrane reported in the literature demonstrates such excellent pH stability. This strategy opens a new route for fabricating highly selective membranes that can be used in harsh pH environments.

Funder

National Research Foundation of Korea

Korea University

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3