Anti‐Dissociation Passivation via Bidentate Anchoring for Efficient Carbon‐Based CsPbI2.6Br0.4 Solar Cells

Author:

Liao Yongyu1,Zhang Jianxin1,Wang Wenran1,Yang Zechao1,Huang Rong1,Lin Jiage1,Che Lei2,Yang Guoying2,Pan Zhenxiao1ORCID,Rao Huashang1ORCID,Zhong Xinhua1ORCID

Affiliation:

1. Key Laboratory for Biobased Materials and Energy of Ministry of Education Guangdong Laboratory for Lingnan Modern Agriculture College of Materials and Energy South China Agricultural University Guangzhou 510642 China

2. Zhejiang Eco Environmental Technology Co. LTD Huzhou 313000 China

Abstract

AbstractMolecular passivation on perovskite surface is an effective strategy to inhibit surface defect‐assisted recombination and reduce nonradiative recombination loss in perovskite solar cells (PSCs). However, the majority of passivating molecules bind to perovskite surface through weak interactions, resulting in weak passivation effects and susceptible to interference from various factors. Especially in carbon‐based perovskite solar cells (C‐PSCs), the molecular passivation effect is more susceptible to disturbance in subsequent harsh preparation of carbon electrodes via blade‐coating route. Herein, bidentate ligand 2,2′‐Bipyridine (2Bipy) is explored to passivate surface defects of CsPbI2.6Br0.4 perovskite films. The results indicate that compared with monodentate pyridine (Py), bidentate 2Bipy shows a stronger chelation with uncoordinated Pb(II) defects and exhibits a greater passivation effect on perovskite surface. As a result, 2Bipy‐modified perovskite films display a significantly boosted photoluminescence lifetime, accompanied by excellent anchoring stability and anti‐dissociation of passivating molecules. Meanwhile, the moisture resistance of the 2Bipy‐modified perovskite films is also significantly enhanced. Consequently, the efficiency of C‐PSCs is improved to 16.57% (Jsc = 17.16 mA cm−2, Voc = 1.198 V, FF = 80.63%). As far as it is known, this value represents a new record efficiency for hole transport material‐free inorganic C‐PSCs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3