MXene/Zwitterionic Hydrogel Oriented Anti‐freezing and High‐Performance Zinc–Ion Hybrid Supercapacitor

Author:

Li Ruonan1,Jia Wenhan1,Wen Jianfeng1,Hu Guanghui1,Tang Tao2,Li Xinyu1,Jiang Li1,Li Ming1,Huang Haifu3,Fang Guozhao4ORCID

Affiliation:

1. College of Physics and Electronic Information Engineering & Ministry‐Province Jointly Constructed Cultivation Base for State Key Laboratory of Processing for Mom‐Ferrous Metal and Featured Materials & Key Laboratory of Nonferrous Materials and New Processing Technology Guilin University of Technology Guilin 541004 P. R. China

2. Guilin University of Aerospace Technology Guilin 541004 P. R. China

3. Guangxi Novel Battery Materials Research Center of Engineering Technology Center on Nanoenergy Research School of Physics Science and Technology Guangxi University Nanning 530004 P. R. China

4. School of Materials Science & Engineering Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province Central South University Changsha Hunan 410083 P. R. China

Abstract

AbstractWith the wide application of portable electronic devices, zinc–ion hybrid supercapacitors (ZIHCs) have aroused great interest. However, balancing the low‐temperature performance and high energy density of ZIHCs remains a huge challenge. Herein, a zwitterionic hydrogel electrolyte (ZHE) loaded with carboxymethylcellulose and MXene is designed for ZIHCs, which shows excellent frost resistance and high output voltage. Carboxymethylcellulose and MXene enhance the flexibility and conductivity of the zwitterionic hydrogel electrolyte. Moreover, When ZnCl2 is introduced into a gel electrolyte, it induces an increase in the rate of ion transport, which enables a broadening of the operating temperature of the hydrogel (−40 °C–25 °C). As a result, Zn//AC ZIHCs based on ZHE show a high voltage window of 2 V, a high energy density (specific capacity) of 137 Wh kg−1 (247 F g−1), and the potential for wearable devices. This study will provide an effective strategy for the design of hydrogel ZIHCs with wide voltage windows, high energy density, and high practicality.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3