Highly Pseudocapacitive Storage Design Principles of Heteroatom‐Doped Graphene Anode in Calcium‐Ion Batteries

Author:

Gao Yong1,Li Zhenglong1,Wang Pan2,Cui Wengang1,Wang Xiaowei3,Yang Yaxiong1,Gao Fan1,Zhang Mingchang1,Gan Jiantuo1,Li Chenchen1,Liu Yanxia1,Wang Xinqiang1,Qi Fulai1,Zhang Jing2,Han Xiao2,Du Wubin4,Pan Hongge1,Xia Zhenhai5ORCID

Affiliation:

1. Institute of Science and Technology for New Energy Xi'an Technological University Xi'an 710021 China

2. School of Materials Science and Engineering Northwestern Polytechnical University Xi'an 710072 China

3. Department of Materials Science and Engineering University of North Texas Denton TX 76203 USA

4. School of Materials Science and Engineering Zhejiang University Hangzhou 310058 P. R. China

5. Australian Carbon Materials Centre School of Chemical Engineering University of New South Wales Sydney NSW 2052 Australia

Abstract

AbstractPseudocapacitive storage of multivalent ions, especially Ca2+, in heteroatom‐doped carbon nanomaterials is promising to achieve both high energy and power densities, but there is the lack of pseudocapacitive theories that enable rational design of the materials for calcium‐ion batteries. Herein, the general design principles are established for the anode materials of the batteries via density functional theory calculations and experimental verifications of a series of heteroatom‐doped graphene as an efficient pseudocapacitive anode. A novel descriptor Φ is proposed to correlate the intrinsic properties of dopants with the pseudocapacitive storage properties of the carbon‐based anode. The design principle and descriptor have the predictive ability to screen out the best dual‐doped graphene anode with 10 times higher Ca2+ storage capability than that of sole‐doped one, and exceed the current best Ca2+ storage anode materials.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3