Ionic Liquid Enabled Transparent Heterogeneous Elastomers for Soft Electronics

Author:

Chen Weilong1,Qiao Zihao1,Wang Caiyan1,Li Bin1,Ding Shujiang2,Shi Lei1ORCID

Affiliation:

1. School of Materials Sun Yat‐sen University Shenzhen 518107 P. R. China

2. School of Chemistry Xi'an Jiaotong University Engineering Research Center of Energy Storage Materials and Devices Ministry of Education State Key Laboratory of Electrical Insulation and Power Equipment Xi'an 710049 P. R. China

Abstract

AbstractDielectric elastomer (DE), as an electrically active soft material, has enabled stretchable electronics, electronic skins, artificial muscles, biomimetic soft robots, and non‐magnetic motors. High permittivity is urgently desired for increasing the sensitivity of DE sensors and lowering the driving voltage of DE actuators. However, existing efforts for significantly enhanced permittivity is usually achieved at the expense of transparency of the DE by compositing external fillers, which limits the applications in optoelectronics, such as displays, touch screens, artificial eyes, etc. Here, by utilizing of transparent functional filler, ionic liquid micro‐droplet, and precise matching the refractive index with polydimethylsiloxane (PDMS) elastomer matrix, heterogeneous composites with high transparency and high permittivity are obtained simultaneously. The composites are transparent in the visible range (transmittance, 80%–95%). The permittivity reaches up to 22, which is more than seven times higher than the original value of the elastomer matrix. Moreover, the arbitrary deformability of ionic liquid filler endows the composites with better stretchability (300%) and much lower elastic modulus (0.5 MPa, about a quarter the value of PDMS), which is beneficial for soft electronics. Based on the as‐prepared high‐performance composites, high sensitivity and transparent soft sensors and touch panels have been realized, as well as wireless transmission of sensing signals.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3