Affiliation:
1. Department of Mechanical Engineering Boston University Boston MA 02215 USA
2. Division of Materials Science and Engineering Boston University Boston MA 02215 USA
Abstract
AbstractLiquid metals, such as Gallium‐based alloys, have unique mechanical and electrical properties because they behave like liquid at room temperature. These properties make liquid metals favorable for soft electronics and stretchable conductors. In addition, these metals spontaneously form a thin oxide layer on their surface. Applications made possible by this delicate oxide skin include shape reconfigurable electronics, 3D‐printed structures, and unconventional actuators. This paper introduces a new approach where liquid metal oxide serves as an electrochemical energy source. By mechanically rupturing their surface oxide, liquid metals form a galvanic cell and convert their chemical energy to electrical energy. When dispersing liquid metals into an ionically‐conductive liquid to form emulsions, this composite material can provide ∼500 mV of open‐circuit voltage and up to ∼4 μW of power. Protected by the naturally occurring oxide skin, the passivating oxide layer of the liquid metal shields it from self‐discharge over time. The device is also stable in harsh environments, such as high temperature or aquatic conditions. Future applications of this device are demonstrated by designing a strain‐activated stretchable battery and a pressure‐sensitive self‐powered keypad. These findings may unlock new pathways to design stretchable batteries and harness their inherent energy for self‐powered robust devices.
Funder
National Science Foundation
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献