Untangling the Fundamental Electronic Origins of Non‐Local Electron–Phonon Coupling in Organic Semiconductors

Author:

Banks Peter A.1,D'Avino Gabriele2,Schweicher Guillaume3,Armstrong Jeff4,Ruzié Christian3,Chung Jong Won5,Park Jeong‐Il5,Sawabe Chizuru6,Okamoto Toshihiro7,Takeya Jun7,Sirringhaus Henning8,Ruggiero Michael T.1ORCID

Affiliation:

1. Department of Chemistry, University of Vermont 82 University Place Burlington Vermont 05405 USA

2. Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel 38042 Grenoble France

3. Laboratoire de Chimie des Polymres, Facult des Sciences Universit Libre de Bruxelles (ULB) Boulevard du Triomphe, CP 206/01 Bruxelles 1050 Belgium

4. ISIS Facility, Rutherford Appleton Laboratory Harwell Oxford, Didcot Oxfordshire OX11 0QX UK

5. Organic Material Lab. Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Suwon 16678 South Korea

6. Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, School of Frontier Sciences The University of Tokyo, 5‐1‐5 Kashiwanoha Kashiwa Chiba 277‐8561 Japan

7. National Institute of Advanced Industrial Science and Technology (AIST)‐University of Tokyo Advanced Operando‐Measurement Technology Open Innovation Laboratory (OPERANDO‐OIL) AIST, 5‐1‐5 Kashiwanoha Kashiwa Chiba 277‐8561 Japan

8. Optoelectronics Group, Cavendish Laboratory University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK

Abstract

AbstractOrganic semiconductors with distinct molecular properties and large carrier mobilities are constantly developed in attempt to produce highly‐efficient electronic materials. Recently, designer molecules with unique structural modifications have been expressly developed to suppress molecular motions in the solid state that arise from low‐energy phonon modes, which uniquely limit carrier mobilities through electron–phonon coupling. However, such low‐frequency vibrational dynamics often involve complex molecular dynamics, making comprehension of the underlying electronic origins of electron–phonon coupling difficult. In this study, first a mode‐resolved picture of electron–phonon coupling in a series of materials that are specifically designed to suppress detrimental vibrational effects, is generated. From this foundation, a method is developed based on the crystalline orbital Hamiltonian population (COHP) analyses to resolve the origins—down to the single atomic‐orbital scale—of surprisingly large electron–phonon coupling constants of particular vibrations, explicitly detailing the manner in which the intermolecular wavefunction overlap is perturbed. Overall, this approach provides a comprehensive explanation into the unexpected effects of less‐commonly studied molecular vibrations, revealing new aspects of molecular design that should be considered for creating improved organic semiconducting materials.

Funder

National Science Foundation

Fonds De La Recherche Scientifique - FNRS

Agence Nationale de la Recherche

Engineering and Physical Sciences Research Council

H2020 European Research Council

Royal Society

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3