Targeted Modulation of Competitive Active Sites toward Nitrogen Fixation via Sulfur Vacancy Engineering Over MoS2

Author:

Fei Hao1,Liu Ruoqi1,Wang Jian2,Guo Ting1,Wu Zhuangzhi1ORCID,Wang Dezhi1,Liu Fangyang3

Affiliation:

1. School of Materials Science and Engineering Central South University Changsha 410083 China

2. School of Energy and Environment City University of Hong Kong Hong Kong 999077 China

3. School of Metallurgy and Environment Central South University Changsha 410083 China

Abstract

AbstractElectrocatalytic nitrogen reduction reaction (NRR) offers an environmentally benign and sustainable alternative for NH3 synthesis. However, developing NRR electrocatalysts with both high activity and selectivity remains a significant challenge. Guided by the density functional theory (DFT) calculations and further verified by the experiment, a modulated MoS2 with well‐controlled S vacancies (MoS2‐Vs) is prepared as an excellent electrocatalyst for NRR, where both the activity and selectivity of NRR mightily rely on the S‐vacancy concentration. The optimized catalyst (MoS2‐7H) in a suitable S‐vacancy concentration (17.5%) is empowered with an excellent NRR activity (NH3 yield rate: 66.74 µg h1 mg1 at −0.6 V) and selectivity (Faradic efficiency (FE): 14.68% at −0.5 V). Further mechanistic study reveals that the NRR performance is powerfully concentration‐dependent since its activity is enhanced due to the S‐vacancy‐strengthened N2 adsorption and reduced reaction energy barrier. Simultaneously, its selectivity is synchronously improved by the steadily enhanced NRR activity and inversely suppressed hydrogen evolution reaction through limiting H2 desorption kinetics, which sets it markedly apart from other reported defective MoS2‐based catalysts.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3