A Unified Picture of Aggregate Formation in a Model Polymer Semiconductor during Solution Processing

Author:

Panzer Fabian1ORCID,Dyson Matthew J2ORCID,Bakr Hazem1,Wedler Stefan1,Schötz Konstantin1,Chauhan Mihirsinh13,Stavrinou Paul N4ORCID,Köhler Anna1,Stingelin Natalie5ORCID

Affiliation:

1. Soft Matter Optoelectronics University of Bayreuth 95440 Bayreuth Germany

2. Molecular Materials and Nanosystems and Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven 5600 MB The Netherlands

3. Department of Materials Science and Engineering and Organic and Carbon Electronics Laboratories (ORaCEL) North Carolina State University Raleigh NC 27695 USA

4. Information Engineering Building, Department of Engineering Science University of Oxford Oxford OX1 3PJ UK

5. School of Materials Science & Engineering and School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA

Abstract

AbstractOne grand challenge for printed organic electronics is the development of a knowledge platform that describes how polymer semiconductors assemble from solution, which requires a unified picture of the complex interplay of polymer solubility, mass transport, nucleation and, e.g., vitrification. One crucial aspect, thereby, is aggregate formation, i.e., the development of electronic coupling between adjacent chain segments. Here, it is shown that the critical aggregation temperatures in solution (no solvent evaporation allowed) and during film formation (solvent evaporation occurring) are excellent pointers to i) establish reliable criteria for polymer assembly into desired aggregates, and ii) advance mechanistic understanding of the overall polymer assembly. Indeed, important insights are provided on why aggregation occurs via a 1‐ or 2‐step process depending on polymer solubility, deposition temperature and solvent evaporation rate; and the selection of deposition temperatures for specific scenarios (e.g., good vs bad solvent) is demystified. Collectively, it is demonstrated that relatively straightforward, concurrent in situ time‐resolved absorbance and photoluminescence spectroscopies to monitor aggregate formation lead to highly useful and broadly applicable criteria for processing functional plastics. In turn, improved control over their properties and device performance can be obtained toward manufacturing sensors, energy‐harvesting devices and, e.g., bioelectronics systems at high yield.

Funder

National Science Foundation

Royal Society of Chemistry

Engineering and Physical Sciences Research Council

H2020 Marie Skłodowska-Curie Actions

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3