Programmable and Ultrasensitive Haptic Interfaces Enabling Closed‐Loop Human–Machine Interactions

Author:

Lin Wansheng1,Wei Chao1,Yu Shifan1,Chen Zihan1,Zhang Cuirong1,Guo Ziquan1,Liao Qingliang23,Wang Shuli1,Lin Maohua4,Zheng Yuanjin5,Liao Xinqin1ORCID,Chen Zhong1

Affiliation:

1. Department of Electronic Science Xiamen University Xiamen 361005 China

2. Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 China

3. Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China

4. Department of Ocean and Mechanical Engineering Florida Atlantic University Boca Raton FL 33431 USA

5. School of Electrical and Electronic Engineering Nanyang Technological University Singapore 639798 Singapore

Abstract

AbstractIntuitive, efficient, and unconstrained interactions require human–machine interfaces (HMIs) to accurately recognize users' manipulation intents. Susceptibility to interference and conditional usage mode of HMIs will lead to poor experiences that limit their great interaction potential. Herein, a programmable and ultrasensitive haptic interface enabling closed‐loop human–machine interactions is reported. A cross‐scale architecture design strategy is proposed to fabricate the haptic interface, which optimizes the hierarchical contact process. The synergistic optimization of the cross‐scale architecture between carbon nanotubes and the multiscale sensing structure realizes a haptic interface with ultrahigh sensitivity and a wide detection range of 15.1 kPa−1 and 180 kPa, which are improved by more than 900% over the performance of the common interface. The rapid response time of <5 ms and the limit of detection of 8 Pa of the haptic interface far surpass the somatosensory perception of human skin, which enables the haptic interface to accurately recognize interactive intents. A wireless pressure‐data interactive glove (wireless PDI glove) is designed and realizes a round‐the‐clock operation, noise immunity, and efficient interactive control, which perfectly compensate for the flaws of typical vision and voice recognition modes.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3