Direct Z‐Scheme Xylan‐Based Carbon Dots@TiO2‐x Nanocomposites for Visible Light Driven Photocatalytic of Dye Degradation and Antibacterial

Author:

Cong Shurui12,Cai Jihai1,Li Xiaoyun1,You Junqin2,Wang Lei2,Wang Xiaoying1ORCID

Affiliation:

1. State Key Laboratory of Pulp & Paper Engineering South China University of Technology Guangzhou 510640 China

2. State Key Laboratory of NBC Protection for Civilian Beijing 102205 China

Abstract

AbstractTiO2 photocatalysis has gained attention as a cost‐effective way of degrading contaminants. However, it relies on UV excitation and experiences rapid carrier recombination. To address these drawbacks, novel xylan‐based carbon dots@hydrogenated TiO2 (CDs@TiO2‐x) composited by direct Z‐scheme heterojunction is fabricated as a visible light‐driven photocatalytic material, which broadens the range of light absorption to visible light and suppresses the recombination of photogenerated carriers. The spindle‐shaped CDs@TiO2‐x has C/N/O/S groups, positive charges, and oxygen vacancies on its surface, and can degrade 89% of methylene blue and 87% of methyl orange within 90 min, and 99% of rhodamine B within 60 min in visible light. It also eradicates 99.9% of E. coli in 2 h and 97.1% of S. aureus in 2.5 h. These performances surpass CDs and TiO2‐x, and exhibit advantages in similar composite materials. The degradation pathways of dyes and the specific antibacterial processes induced by ROS are thoroughly investigated through LC‐MS testing and related enzyme activity assays. DFT calculations study the role of oxygen vacancies, heterojunction mechanism, and catalytic sites. This study has developed a novel nanocomposite with applications in both dye degradation and sterilization, offering insights for multifunctional materials based on photocatalysis and heterojunction.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3