Initiatorless Solar Photopolymerization of Versatile and Sustainable Eutectogels as Multi‐Response and Self‐Powered Sensors for Human–Computer Interface

Author:

Xue Kai1,Shao Changyou1ORCID,Yu Jie1,Zhang Hongmei1,Wang Bing1,Ren Wenfeng1,Cheng Yabin2,Jin Zixian2,Zhang Fei2,Wang Zuankai3,Sun Runcang1

Affiliation:

1. Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery College of Light Industry and Chemical Engineering Dalian Polytechnic University Dalian 116034 China

2. Institute of Flexible Electronics Technology of THU Jiaxing Zhejiang 314000 China

3. Department of Mechanical Engineering The Hong Kong Polytechnic University Hong Kong 999077 China

Abstract

AbstractEutectogels are emerging as an appealing soft conductor for self‐powered sensing and the next generation of flexible human–computer interactive devices owing to their inherent mechanical elasticity and high ionic conductivity. However, it still remains a challenge to simultaneously achieve multi‐functional and multi‐response integrations through a facile and sustainable approach. Herein, a self‐healing, environment tolerant, intrinsically conductive, and recyclable eutectogel with multiple responses is developed via one‐step solar‐initiated polymerization of deep eutectic solvents (DESs) and ionic liquids (ILs). Abundant hydrogen bonds and ion‐dipole interactions impart eutectogels with high mechanical strength (8.8 MPa), ultra‐stretchability (>1100%), strong self‐adhesion (≈12 MPa), recyclability, and autonomously self‐healing ability. Furthermore, the intrinsically conductive eutectogels with appealing versatile sensations on strain, temperature, and humidity can serve as wearable sensors for wireless motion recognition and human–computer interaction control. More importantly, the eutectogel‐assembled single‐electrode triboelectric nanogenerator (TENG) exhibits extreme environment‐tolerant and fast self‐healable properties that contribute to maintaining excellent and stable electrical outputs in a wide work temperature range (approximately −40–60 °C), which appear to be promising in self‐powered flexible electronics with high environmental adaptability.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3