Ink to Power: An Organic‐based Polymer Electrolyte for Ambient Printing of Flexible Zinc Batteries

Author:

Tao Shiwei1ORCID,Ramirez Julio1ORCID,Shewan Heather M.2ORCID,Lyu Miaoqiang23ORCID,Gentle Ian4ORCID,Wang Lianzhou23ORCID,Knibbe Ruth1ORCID

Affiliation:

1. School of Mechanical and Mining Engineering, Faculty of Engineering Architecture and Information Technology The University of Queensland Brisbane QLD 4072 Australia

2. School of Chemical Engineering, Faculty of Engineering Architecture and Information Technology The University of Queensland Brisbane QLD 4072 Australia

3. Nanomaterials Centre, Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia

4. School of Chemistry and Molecular Biosciences, Faculty of Science The University of Queensland Brisbane QLD 4072 Australia

Abstract

AbstractThe rapid evolution of wearable devices, the Internet of Things, and flexible displays has underscored the need for thin, flexible batteries. Screen‐printing has emerged as a mature technique for manufacturing these batteries, particularly those using a zinc chemistry. This study presents a commercially viable polymer electrolyte using a low‐cost organic electrolyte solvent, ethylene glycol. This first‐of‐its‐kind electrolyte formulation overcomes challenges associated with either water‐based or ionic‐liquid‐based solvents. The simple fabrication process allows for printing under ambient conditions and eliminates additional processing steps. Rheological analysis confirms that the developed polymer electrolyte is suitable for screen‐printing. Using this polymer electrolyte, a secondary printed battery with a 4 mAh cm2 areal capacity is achieved. The study also investigates the mechanical behavior of the printed battery and emphasizes the importance of understanding interfacial stresses and bonding for designing optimal multilayered flexible batteries. This research offers an integrated solution, combining practical printed battery fabrication with battery testing and mechanical characterization, promising advancements in printed batteries and electronics.

Funder

Australian Research Council

Advance Queensland

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3