Affiliation:
1. College of Physics and Optoelectronic Engineering Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences No. 1, Sub‐Lane Xiangshan, Xihu District Hangzhou 310024 China
2. State Key Laboratory of Infrared Physics Shanghai Institute of Technical Physics Chinese Academy of Sciences 500 Yu‐Tian Road Shanghai 200083 China
Abstract
AbstractUncooled broadband spectrum detection, spanning from visible to mid‐wave‐infrared regions, offers immense potential for applications in environmental monitoring, optical telecommunications, and radar systems. While leveraging proven technologies, conventional mid‐wave‐infrared photodetectors are encumbered by high dark currents and the necessity for cryogenic cooling. Correspondingly, innovative low‐dimensional materials like black phosphorus manifest weak photoresponse and instability. Here, tantalum nickel selenide (Ta2NiSe5) infrared photodetectors with an operational wavelength range from 520 nm to 4.6 µm, utilizing a hexagonal boron nitride (h‐BN) encapsulation technique are introduced. The h‐BN encapsulated metal‐Ta2NiSe5‐metal photodetector demonstrates a responsivity of 0.86 A W−1, a noise equivalent power of 1.8 × 10−11 W Hz−1/2, and a peak detectivity of 8.75 × 108 cm Hz1/2 W−1 at 4.6 µm under ambient conditions. Multifaceted mechanisms of photocurrent generation in the novel device prototype subject are scrutinized to varying wavelengths of radiation, by characterizing the temporal‐, bias‐, power‐, and temperature‐dependent photoresponse. Moreover, the photopolarization dependence is delved and concealed‐target imaging is demonstrated, which exhibits polarization angle sensitivity and high‐fidelity imaging across the visible, short‐wave, and mid‐wave‐infrared bands. The observations, which reveal versatile detection modalities, propose Ta2NiSe5 as a promising low‐dimensional material for advanced applications in nano‐optoelectronic device.
Funder
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Science and Technology Commission of Shanghai Municipality
Natural Science Foundation of Zhejiang Province
Shanghai Rising-Star Program
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献