Affiliation:
1. Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 P. R. China
2. College of Furnishings and Industrial Design Nanjing Forestry University Nanjing Jiangsu 210037 P. R. China
3. Innovative Center for Flexible Devices (iFLEX) Max Planck–NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
4. Innovation Centre for Chemical Sciences College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 P. R. China
Abstract
AbstractThe development of mutually reinforcing solar‐driven interfacial evaporation (SDIE) and integrated functional materials/systems to achieve efficient production of freshwater and energy/matters simultaneously under extremely high solar utilization is in high demand. Herein, an integrated SDIE reaction system (reduced graphene oxide (rGO)‐palladium (Pd) catalytic evaporator, rGO‐Pd) is first reported, where SDIE and the integrated catalytic reaction are mutually reinforced. The apparent utilization of solar to thermal energy by the integrated SDIE reaction system is a combination of evaporative utilization and catalytic utilization. The reaction heat released by the rGO‐Pd catalytic evaporator enhances its anti‐salt water production performance to a record of 12.7 L m−2 h−1, surpassing the reported performance of other integrated SDIE reaction systems. In the rGO‐Pd catalytic evaporator, the synergetic effect of photothermal and rapid mass transfer significantly increases the catalytic activity (turnover frequency) of Pd catalysts up to a record 125.07 min−1, which is about 3.75 times of the condition without light. This integrated SDIE reaction system can effectively and simultaneously produce freshwater, salt, and catalyzed chemicals after evaporating water to dryness. This study paves the way for SDIE's high‐performance applications in future integrated water, energy, and environmental systems.
Funder
National Natural Science Foundation of China
Collaborative Innovation Center of Suzhou Nano Science and Technology
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献