Tuning the Electronic and Electrochemical Properties of 3D Porous Laser‐Induced Graphene by Electrochemically Induced Deposition of Polyoxovanadate Nanoclusters for Flexible Supercapacitors

Author:

Arya Nikhil12,Dinda Sirshendu2,Diemant Thomas23,Wang Ke1,Fichtner Maximilian23,Anjass Montaha124ORCID

Affiliation:

1. Institute of Inorganic Chemistry I Ulm University Albert‐Einstein‐Allee 11 89081 Ulm Germany

2. Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU) Helmholtzstr. 11 89081 Ulm Germany

3. Karlsruhe Institute of Technology (KIT) Institute of Nanotechnology P. O. Box 3640 76021 Karlsruhe Germany

4. Department of Chemistry University of Sharjah 27272 Sharjah United Arab Emirates

Abstract

AbstractThe advancement of microelectronic devices mandates the development of flexible energy storage systems to enable the fabrication of miniaturized and wearable electronics. Herein, a sustainable approach is demonstrated for tuning the electronic and electrochemical properties of hierarchically porous laser‐induced graphene (LIG) substrates. The methodology entails the electrochemical deposition of polyoxovanadate nanoclusters (K5(CH3CN)3[V12O32Cl] (= K5{V12}) onto the highly porous LIG matrix. The comprehensive characterization is integrated through micro‐Raman spectroscopy and in‐depth X‐ray photoelectron spectroscopy to elucidate the deposition mechanism and electronic properties of the fabricated electrode. The results indicate a significant correlation between the orientation of the deposited clusters and the non‐crystalline regions of the LIG structure. Additionally, the cluster deposition results in a reduction of grain boundary defects in the nano‐graphite lattice of LIG. The optimized electrode exhibits enhanced areal capacitance (CA) of 125 mF cm−2 at a current density of 0.1 mA cm−2, representing a fivefold improvement compared to the undoped LIG substrate. Furthermore, as a proof of concept, a flexible solid‐state symmetrical supercapacitor device, fabricated with a PVA‐H2SO4 gel electrolyte, demonstrates an areal capacitance of 24.92 mF cm−2 at current density of 0.1 mA cm−2 and exhibits exceptional cycling stability, enduring up to 5000 consecutive galvanostatic charge‐discharge cycles.

Funder

Deutsche Forschungsgemeinschaft

Universität Ulm

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3