Enhancing Electrical Conductivity and Power Factor in Poly‐Glycol‐Bithienylthienothiophene with Oligoethylene Glycol Side Chains Through Tris (pentafluorophenyl) Borane Doping

Author:

Chen Nan (Louise)1,Mukhopadhyay Tushita1,Song Yunjia1,Griggs Sophie2,Kousseff Christina J.2,McCulloch Iain2,Katz Howard E.1ORCID

Affiliation:

1. Department of Materials Science and Engineering Johns Hopkins University Baltimore Maryland 21210 USA

2. Department of Chemistry Chemistry Research Laboratory University of Oxford Oxford OX1 3TA UK

Abstract

AbstractDoping of organic semiconductors has served as an effective method to achieve high electrical conductivity and large thermoelectric power factor. This is of importance to the development of flexible/wearable electronics and green energy‐harvesting technologies. The doping impact of the Lewis acid tris (pentafluorophenyl) borane (BCF) on the thermoelectric performance of poly(2‐(4,4′‐bis(2‐methoxyethoxy)‐5′‐methyl‐[2,2′‐bithiophen]‐5‐yl)‐5‐methylthieno[3,2‐b]thiophene (pgBTTT), a thiophene‐based polymer featuring oligoethylene glycol side chains is investigated. Tetrafluorotetracyanoquinodimethane (F4TCNQ), a well‐established dopant, is utilized as a comparison; however, its inability to co‐dissolve with pgBTTT in less polar solvents hinders the attainment of higher doping levels. Consequently, a comparative study is performed on the thermoelectric behavior of pgBTTT doped with BCF and F4TCNQ at a very low doping level. Subsequent investigation is carried out with BCF at higher doping levels. Remarkably, at 50 wt% BCF doping level, the highest power factor of 223 ± 4 µW m−1 K2 is achieved with an electrical conductivity of 2180 ± 360 S cm−1 and a Seebeck coefficient of 32 ± 1.3 µV K−1. This findings not only contribute valuable insights to the dopant interactions with oxygenated side chain polymers but also open up new avenues for high conductivity thermoelectric polymers in flexible electronic applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3