Achieving Ultra‐Durability and High Output Performance of Triboelectric Nanogenerators

Author:

Fu Shaoke1ORCID,Hu Chenguo1ORCID

Affiliation:

1. Department of Applied Physics Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials Chongqing University Chongqing 400044 P. R. China

Abstract

AbstractWith rapid development of the Internet of Things (IoTs) era, a variety of miniaturized and distributed electronics appear in every corner of industrial production and daily life. The shortage of fossil fuels requires renewable clean energy to replace traditional energy to meet the needs of smart and low‐power devices. Triboelectric nanogenerator (TENG) is a new technology for converting high‐entropy mechanical energy into electric energy to power these devices. However, improving the output energy and durability of TENG remains a considerable challenge for practical applications. To solve these problems and push forward its commercialization process, this paper systematically reviews how to improve the durability of the sliding mode TENG (S‐TENG) from the aspects of material optimization and structural design. Besides, a variety of ways are introduced to improve the electric output of the S‐TENG under the premise of high durability. At last, challenges and future research focus in this field are also predicted, which provide a guideline for the research of the high electric output and ultra‐durability TENG for highly efficient energy harvesting and self‐powered sensing applications in the IoTs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3