Affiliation:
1. College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
2. Engineering Research Center of Novel Equipment for Polymer Processing Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing South China University of Technology Guangzhou 510641 P. R. China
3. Department of Macromolecular Science and Engineering Case Western Reserve University Cleveland OH 44106‐7202 USA
Abstract
AbstractPoly(vinylidene fluoride) (PVDF)‐based polymers demonstrate great potential for applications in flexible and wearable electronics but show low piezoelectric coefficients (e.g., −d33 < 30 pC N−1). The effective improvement for the piezoelectricity of PVDF is achieved by manipulating its semicrystalline structures. However, there is still a debate about which component is the primary contributor to piezoelectricity. Therefore, current methods to improve the piezoelectricity of PVDF can be classified into modulations of the amorphous phase, the crystalline region, and the crystalline–amorphous interface. Here, the basic principles and measurements of piezoelectric coefficients for soft polymers are first discussed. Then, three different categories of structural modulations are reviewed. In each category, the physical understanding and strategies to improve the piezoelectric performance of PVDF are discussed. In particular, the crucial role of the oriented amorphous fraction at the crystalline–amorphous interface in determining the piezoelectricity of PVDF is emphasized. At last, the future development of high performance piezoelectric polymers is outlooked.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献