Affiliation:
1. School of Mechanical Engineering Chengdu University Chengdu 610106 P. R. China
2. School of Materials Science and Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
3. State Key Laboratory of Photocatalysis on Energy and Environment and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
Abstract
AbstractAs a chemical product with rapidly expanding demand in the field of modern energy and environmental applications, hydrogen peroxide (H2O2) has garnered widespread attention. However, the existing industrial production of H2O2 is plagued by high energy consumption, harmful waste emission, and severe safety issues, making it difficult to satisfy the environmental/economic production concept. Artificial photosynthesis offers a viable strategy for green and sustainable H2O2 production since it uses sunlight as an energy source to initiate the reaction of oxygen and water to produce H2O2. Among various photocatalysts, covalent organic frameworks (COFs), featuring highly ordered skeletons and well‐defined active sites, have emerged as promising photocatalysts for H2O2 production. This review presents the nascent and burgeoning area of photocatalytic H2O2 production based on COFs. First, a brief overview of photocatalytic technology is provided, followed by a detailed introduction to the principles and evaluation of the photocatalytic H2O2 generation. Subsequently, the latest research progress on the judicious design of COFs for H2O2 photosynthesis is expounded, with a particular emphasis on manipulating the electronic structures and redox active sites. Finally, an outlook on the challenges and future opportunities is proposed, in the hope of stimulating further explorations of novel molecular‐designed COFs for sustainable photosynthesis.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献