A Novel Multifunctional Material for Constructing 3D Multi‐Response Structures Using Programmable Two‐Photon Laser Fabrication

Author:

Zhang Yuzhao123ORCID,Yu Haibo12,Zhang Xiaojie4,Zheng Jianchen123,Wang Jingang123,Guo Hongji12,Qiu Ye123,Wang Xiaoduo12,Liu Lianqing12,Li Wen Jung125

Affiliation:

1. State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang 110016 China

2. Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang 110169 China

3. University of Chinese Academy of Sciences Beijing 100049 China

4. Hebei Key Laboratory of Functional Polymers Department of Polymer Materials and Engineering Hebei University of Technology Tianjin 300130 China

5. Department of Mechanical Engineering City University of Hong Kong Hong Kong 999077 China

Abstract

AbstractTwo‐photon polymerization direct laser writing (TPP‐DLW) technology has gained much popularity due to its precision and flexibility in creating intricate 3D micro/nano‐scale devices and machines. While TPP‐DLW enables complex 3D micro/nano patterning, developing multifunctional materials tailored for this process remains a challenge, limiting sophisticated micro/nano device performance. This work addresses key barriers by introducing a novel multifunctional network polymer with specifically designed for TPP‐DLW. The material integrates tailored functional groups allowing submicron 3D spatial arrangement under laser control. Remarkably, it demonstrates tunable pH response, programmed fluorescence, and dynamic reconfiguration upon optical illumination. By leveraging TPP‐DLW's programmability, reconfigurable encrypted microstructures are achieved, representing a new precision multifunctional material printing paradigm beyond single property systems. The synthesized material with its responsive properties, combined with digital fabrication control, fills critical gaps in developing smart, adaptive micro/nano systems. Potential applications requiring exquisite 3D control and multi‐tasking, such as biomedical sensors, micromachines and optics could see transformative advancement. Fundamentally, this integrated materials‐processing approach broadens micro/nano manufacturing design space and functional versatility.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3