Charge Accumulation Effect Enabled by a Bioinspired Self‐lubricating Triboelectric Nanogenerator for Both High Average Power Density and Long Durability

Author:

Chen Ai1,Zeng Qixuan1,Tan Liming1,Wang Tingyu1,Xu Fan1,Wang Jian1,Tao Xingming1,Yang Yuchen1,Wang Xue1ORCID

Affiliation:

1. Department of Applied Physics Chongqing University Chongqing 400044 P. R. China

Abstract

AbstractRecently through the synergetic utilization of triboelectrification, electrostatic induction, and electrostatic discharge, a novel dual‐functional triboelectric nanogenerator (DF‐TENG) has been developed, which can not only generate a motion‐responsible alternating current/ direct current output but also provide a higher performance compared to traditional TENGs. However, further improvements in performance and lifespan are crucial and remain challenging for the future large‐scale application of this new‐type TENG. Herein, a novel bioinspired self‐lubricating prototype is presented (BS‐TENG), which employs a porous polyurethane (PU) matrix impregnated with a low‐viscosity dielectric lubricant. In response to external mechanical stimuli, the BS‐TENG can “secrete” pre‐stored lubricant to partially fill micro‐gaps between tribo‐layers, thus forming self‐lubrication. This self‐lubricating mechanism not only elevates the electrostatic discharge threshold between tribo‐layers to maximize charge accumulation, thereby facilitating efficient energy release through electrostatic discharge for enhanced power output, but also significantly reduces material abrasion and realizes superior output durability. Benefiting from this effect, the BS‐TENG delivers an average power density of up to 4.6 W m−2, with extraordinary stability to retain 99% of its initial output even after over 60 000 cycles. This work provides a straightforward and effective strategy for realizing high‐performance and long‐stability TENGs, paving the way for their practical applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing Municipality

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3