Reconstructing Inorganic‐Rich Interphases by Nonflammable Electrolytes for High‐Voltage and Low‐Temperature LiNi0.5Mn1.5O4 Cathodes

Author:

Fan Xin‐Yu1,Liu Mengting1,Chen Tian‐Lin1,Hao Wenyu2,Cao Zhigang3,Jiang Nan3,Liu Qiang1,Feng Yi‐Hu1,Qin Hao1,Chen Si‐Fan1,Liu Sufu4,Ji Xiao2,Xiao Yao5ORCID,Chou Shulei5,Wang Peng‐Fei1ORCID

Affiliation:

1. Center of Nanomaterials for Renewable Energy State Key Laboratory of Electrical Insulation and Power Equipment School of Electrical Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 P. R. China

2. School of Optical and Electronic Information‐Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China

3. State Grid East Inner Mongolia Electric Power Supply Co., Ltd. Hohhot 010010 P. R. China

4. Swiss Federal Laboratories for Materials Science and Technology Dübendorf 8600 Switzerland

5. Institute for Carbon Neutralization College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 P. R. China

Abstract

AbstractCobalt‐free and spinel LiNi0.5Mn1.5O4 (LNMO) cathodes commonly suffer from undesirable solvent decomposition, serious transition‐metal dissolution, and unstable cathode electrolyte interphase (CEI) layers, incurring rapid capacity decay at high voltages and low temperatures. Herein, these issues are well addressed by utilizing fluorinated solvents with a low coordination number and ethyl propionate with a low melting point. A Li2CO3/LiF‐rich heterostructured CEI layer, which possesses good electron blocking capability of LiF, fast Li+ transport kinetics of Li2CO3 and good mechanical stability, is generated by the synergistic decomposition of hybrid solvents. The robust, homogeneous, and well‐balanced CEI layers subsequently prevent catalyzed parasitic side reactions, prohibit transition‐metal dissolution, and ensure fast interfacial reaction kinetics crossover to the LNMO cathode, thus improving its cycling stability. Consequently, the LNMO cathode delivers a high‐capacity retention of 95.8% over 500 cycles at 25 °C and 97.5% after 180 cycles at −20 °C. This work provides an encouraging alternative to design the high‐voltage and low‐temperature electrolyte for pushing the ongoing research to stabilize Co‐free LNMO materials toward practical applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

China Postdoctoral Science Foundation

State Key Laboratory of Electrical Insulation and Power Equipment

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3