Carbazole‐Based Anion Ionic Water‐Soluble Two‐Photon Initiator for Achieving 3D Hydrogel Structures

Author:

Bin Fan‐Chun12,Guo Min12,Li Teng12,Zheng Yong‐Chao1,Dong Xian‐Zi1,Liu Jie1,Jin Feng1,Zheng Mei‐Ling1ORCID

Affiliation:

1. Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio‐Inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences No. 29, Zhongguancun East Road Beijing 100190 China

2. School of Future Technologies University of Chinese Academy of Sciences Yanqihu Campus Beijing 101407 China

Abstract

Abstract3D hydrogel structures fabricated by two‐photon polymerization (TPP) have become attractive in biomedical fields. Generally, conventional organic solvents are toxic and the residues left in the fabricated 3D structures are harmful to cells. Hence, anion ionic carbazole‐based water‐soluble two‐photon initiator (TPI) 3,6‐bis[2‐(1‐methylpyridinium)vinyl]‐9‐methylcarbazole ditosylate (BT) is proposed to construct arbitrary 3D hydrogel structures. Cucurbit[7]uril (CB7) and BT form a host‐guest complex (CB7/BT) with a binding ratio of 1:1, which further improves the water solubility, biocompatibility and nonlinear absorption property of TPI. A water‐soluble photoresist consisting of photoinitiator CB7/BT and monomer poly(ethylene glycol) diacrylate is prepared to explore the TPP fabrication capacity. The electron paramagnetic resonance measurement shows that CB7/BT initiates photopolymerization by alkyl radicals. The laser threshold power of the photoresist is 6.3 mW and the feature size is 127 nm in TPP at 780 nm. The initiator with p‐toluenesulfonate anion exhibits higher binding energy, larger two‐photon absorption cross‐section and two‐photon fabrication resolution compared with the previous work using iodide as an anion, indicating a promising way to improve the fabrication capacity of water‐soluble TPI through changing the anion ionic group. The proposed strategy will provide high potential for the further application in the biomedical field.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3