Spintronic Quantum Phase Transition in a Graphene/Pb0.24Sn0.76Te Heterostructure with Giant Rashba Spin‐Orbit Coupling

Author:

DeMell Jennifer E.1ORCID,Naumov Ivan2,Stephen Gregory M.1,Blumenschein Nicholas A.1,Sun Y.‐J. Leo3,Fedorko Adrian4,Robinson Jeremy T.5,Campbell Paul M.5,Taylor Patrick J.6,Heiman Don47,Dev Pratibha2,Hanbicki Aubrey T.1,Friedman Adam L.1ORCID

Affiliation:

1. Laboratory for Physical Sciences 8050 Greenmead Dr. College Park MD 20740 USA

2. Department of Physics and Astronomy Howard University Washington DC 20059 USA

3. Institute for Research in Electronics and Applied Physics University of Maryland College Park MD 20740 USA

4. Dana Research Center Northeastern University Boston MA 02115 USA

5. Electronics Science and Technology Division Naval Research Laboratory Washington DC 20375 USA

6. Army Research Laboratory 2800 Powder Mill Rd. Adelphi MD 20783 USA

7. Plasma Science and Fusion Center MIT Cambridge MA 02139 USA

Abstract

AbstractMechanical stacking of two dissimilar materials often has surprising consequences for heterostructure behavior. In particular, a 2D electron gas (2DEG) is formed in the heterostructure of the topological crystalline insulator Pb0.24Sn0.76Te and graphene due to contact of a polar with a nonpolar surface and the resulting changes in electronic structure needed to avoid polar catastrophe. The spintronic properties of this heterostructure with non‐local spin valve devices are studied. This study observes spin‐momentum locking at lower temperatures that transitions to regular spin channel transport only at ≈40 K. Hanle spin precession measurements show a spin relaxation time as high as 2.18 ns. Density functional theory calculations confirm that the spin‐momentum locking is due to a giant Rashba effect in the material and that the phase transition is a Lifshitz transition. The theoretically predicted Lifshitz transition is further evident in the phase transition‐like behavior in the Landé g‐factor and spin relaxation time.

Funder

Office of the Secretary of Defense

National Science Foundation

Maryland Advanced Research Computing Center

Air Force Office of Scientific Research

Office of Naval Research

W. M. Keck Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3