Affiliation:
1. Institute for Frontier Materials Deakin University Waurn Ponds Victoria 3216 Australia
2. Guangzhou Key Laboratory of Low Dimensional Materials & Energy Storage Devices, School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
Abstract
AbstractOwing to its exceptional properties and wide‐ranging potential applications from aerospace to medicine, hexagonal boron nitride (h‐BN) has garnered considerable attention over the past decades. Boron nitride nanosheets (BNNSs), atomically thin h‐BN, not only inherit most of the outstanding properties of h‐BN but also exhibit superior characteristics compared to their bulk counterpart due to their reduced thickness, such as special adsorption behaviors and enhanced thermal conductivity. Furthermore, BNNSs display distinct thickness‐dependent properties from graphene and other 2D materials, such as unique mechanical response under indentation. This feature article provides an overview of the thickness‐related special properties of BNNSs, primarily derived from mechanically exfoliated h‐BN single crystals. These properties span various domains, including Raman signatures, molecule adsorption‐induced conformational changes, mechanical properties, thermal conductivity, and thermal expansion coefficients. Moreover, the feature article explores the underlying mechanisms governing these atomic‐scale thickness effects. Leveraging their unique properties, the feature article investigates diverse applications of BNNSs, encompassing surface‐enhanced Raman spectroscopy, metal‐enhanced fluorescence, and isotropic thermal management.
Funder
Australian Research Council
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献