In Situ Interphasial Engineering Enabling High‐Rate and Long‐Cycling Li Metal Batteries

Author:

Li Chenrui1,Yang Chengwei1,Huang Tianrun1,Wang Yuehua2,Yang Junhe1,Jiang Yong3,Mao Jianfeng4ORCID,Zheng Shiyou1,Xia Shuixin14

Affiliation:

1. School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China

2. Logistics Engineering College Shanghai Maritime University Shanghai 201306 China

3. School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China

4. School of Chemical Engineering The University of Adelaide Adelaide South Australia 5005 Australia

Abstract

AbstractThe practical implementation of Li metal anode has long been hindered by the significant challenges of notorious dendritic Li growth and severe interphase instability during repeated cycling. Herein, a highly lithiophilic NiSe‐modified host has rationally been constructed to stabilize Li metal by the facile mechanical rolling strategy. The in situ configurated high‐flux Li2Se‐enriched interphase layer can facilitate the fast interfacial charge transfer, high Li plating/stripping reversibility and homogeneous Li nucleation/growth. Consequently, the achieved modified Li metal demonstrates ultrahigh rate capability (10 mA cm−2) and ultralong‐term cycling stability (6600 cycles) with dendrite‐free Li deposition. The Li|LiFePO4 (LFP) cell exhibits an extraordinarily long lifespan cycling stability over 500 cycles with an ultra‐low decay rate of only ≈0.0092% per cycle at 1 C. Furthermore, the 4.5 V high‐voltage Li|LiCoO2 pouch cell with a high areal capacity (≈1.9 mAh cm−2) still reveals an impressively prolonged cyclability over 200 cycles even under the harsh test condition of low negative‐to‐positive‐capacity (N/P) ratio of ≈3.4 and lean electrolyte of ≈5.5 µL mAh−1. This work provides a facile and scalable strategy toward a highly stable Li metal anode for reliable practical usage.

Funder

National Natural Science Foundation of China

Shanghai Rising-Star Program

Natural Science Foundation of Shanghai Municipality

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3