Affiliation:
1. The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
2. School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 China
3. Department of Chemical Research Support Weizmann Institute of Science Rehovot 76100 Israel
Abstract
AbstractCo2+‐ZIF‐67 metal‐organic framework nanoparticles (NMOFs), act as nanozymes catalyzing diverse processes, including peroxidase, oxidase, and catalase activities. Peroxidase activities are reflected by the nanozyme‐catalyzed H2O2 oxidation of dopamine to aminochrome, the H2O2 oxidation of NADH to NAD+, the H2O2‐catalyzed generation of chemiluminescence through oxidation of luminol, and the H2O2‐mediated oxidation of aniline to polyaniline. Oxidase activities of the nanozyme are demonstrated by the Co2+‐ZIF‐67 NMOFs catalyzed aerobic oxidation of dopamine to aminochrome and of NADH to NAD+, and catalase activities of the nanozyme are reflected by the catalytic decomposition of H2O2. Moreover, the Co2+‐ZIF‐67 catalyzed oxidation of aniline to polyaniline (PAN) by H2O2 is accompanied by the coating of NMOFs with PAN to yield a Co2+‐ZIF‐67/PAN hybrid material. Coating the particles in the presence of guest substrates leads to molecular imprinted PAN matrices revealing enhanced ZIF‐67 catalyzed transformations as compared to non‐imprinted PAN matrices. This is demonstrated by imprinting of 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid), ABTS2−, in the PAN coating and the 3.3‐fold enhanced catalyzed oxidation of ABTS2− by H2O2, as compared to the non‐imprinted PAN hybrid composite. Moreover, imprinting of L‐/D‐DOPA in the PAN coating of Co2+‐ZIF‐67 NMOFs leads to chiro‐selective H2O2‐guided oxidation of L‐/D‐DOPA to dopachrome by the NMOFs/PAN composite.
Funder
China Scholarship Council
Ministry of Science and Technology, Israel
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献