Mn‐Rich Phosphate Cathode for Sodium‐Ion Batteries: Anion‐Regulated Solid Solution Behavior and Long‐Term Cycle Life

Author:

Yin Qi‐Min1,Gu Zhen‐Yi2,Liu Yan1,Lü Hong‐Yan1,Liu Yi‐Tong1,Liu Yan‐Ning1,Su Meng‐Yuan1,Guo Jin‐Zhi2,Wu Xing‐Long12ORCID

Affiliation:

1. Faculty of Chemistry Northeast Normal University Changchun Jilin 130024 P. R. China

2. MOE Key Laboratory for UV Light‐Emitting Materials and Technology Northeast Normal University Changchun Jilin 130024 P. R. China

Abstract

AbstractAs a sodium superionic conductor, Mn‐rich phosphate of Na3.4Mn1.2Ti0.8(PO4)3 is considered as one of the promising cathodes for sodium‐ion batteries owing to its good thermodynamic stability and high working voltage. However, Na3.4Mn1.2Ti0.8(PO4)3 is faced with low electronic conductivity, poor cycling stability and complex phase transition caused by multi‐electron transfers, which limits its practical application. Herein, an anion‐regulated strategy is proposed to optimize the Mn‐rich Na3.4Mn1.2Ti0.8(PO4)3 phosphate cathode. After introducing F anions into the lattice, the rate performance is improved from 60.5 to 72.8 mAh g−1 at 20 C. Ascribed to unique structure design, the reaction kinetics of Na3.4Mn1.2Ti0.8(PO4)3 are significantly improved, as demonstrated by cyclic voltammetry at varied scan rates and galvanostatic intermittent titration technique. The generated M‐F bond inhibits Jahn–Teller effect with an improved cycle stability (85.8 mAh g−1 after 1000 cycles at 5 C with 94.3% capacity retention). Interestingly, reaction mechanism of Na3.4Mn1.2Ti0.8(PO4)3 with the complex two‐phase and solid solution reactions changes to the whole solid solution reaction after fluorine substitution, and leads to a smaller volume change of 5.41% during reaction processes, which is verified by in situ X‐ray diffraction. This anion regulation strategy provides a new method for designing the high‐performance phosphate cathode materials of sodium‐ion batteries.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3