Atomically Dispersed Cerium Sites Immobilized on Vanadium Vacancies of Monolayer Nickel‐Vanadium Layered Double Hydroxide: Accelerating Water Splitting Kinetics

Author:

Zeng Kai12,Chao Ming1,Tian Meng1,Yan Jin1,Rummeli Mark H.134,Strasser Peter5,Yang Ruizhi1ORCID

Affiliation:

1. College of Energy, Soochow Institute for Energy and Materials Innovations Soochow University Suzhou 215006 China

2. Institute of Smart City and Intelligent Transportation Southwest Jiaotong University Chengdu 610032 China

3. Centre of Polymer and Carbon Materials Polish Academy of Sciences M. Curie‐Sklodowskiej 34 Zabrze 41‐819 Poland

4. Institute of Environmental Technology VSB‐Technical University of Ostrava Listopadu 15 Ostrava 708 33 Czech Republic

5. Department of Chemistry Chemical Engineering Division Technical University Berlin 10623 Berlin Germany

Abstract

AbstractRational design of efficient single‐atom catalysts is a potential avenue to mitigate the sluggish oxygen evolution reaction (OER) kinetics. Adopting appropriate matrixes to stabilize the single‐atom active centers with the optimized geometric and electronic structure plays an essential role in enhancing catalytic activities. Herein, massive isolated Ce atoms are successfully anchored on monolayer nickel‐vanadium layered double hydroxide support (Ce SAs/m‐NiV LDH) via the vanadium defects trapping strategy, resulting in stabilized Ce single‐atom with the maximum loading of 8.07 wt.%. Benefitting from the strong synergetic electronic interaction between Ce single atoms and monolayer NiV LDH matrix, thus‐prepared catalyst possesses favorable OER (209 mV @ 10 mA cm−2) and water electrolysis performance (1.47 V @ 10 mA cm−2), surpassing other catalysts and even the commercial RuO2 catalyst. Density functional theory (DFT) calculations in combination with in situ electrochemical impedance spectroscopy analysis reveal that the immobilization of monatomic Ce can effectively narrow the band gap and strengthen the density states near the Fermi level as well as more easily adsorb the surficial OH, leading to a lower charge transfer barrier and faster water splitting kinetics.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3