Tunable High‐Temperature Tunneling Magnetoresistance in All‐van der Waals Antiferromagnet/Semiconductor/Ferromagnet Junctions

Author:

Jin Wen12,Li Xinlu3,Zhang Gaojie12,Wu Hao124,Wen Xiaokun12,Yang Li12,Yu Jie12,Xiao Bichen12,Guo Fei5,Zhang Wenfeng12,Zhang Jia3,Chang Haixin1245ORCID

Affiliation:

1. Center for Joining and Electronic Packaging State Key Laboratory of Material Processing and Die & Mold Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China

2. Shenzhen R&D Center of Huazhong University of Science and Technology Shenzhen 518000 China

3. School of Physics and Wuhan National High Magnetic Field Center Huazhong University of Science and Technology Wuhan 430074 China

4. Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China

5. Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery School of Electronic Engineering Guangxi University of Science and Technology Liuzhou 545006 China

Abstract

AbstractMagnetic tunnel junctions (MTJs) are widely applied in spintronic devices for efficient spin detection through the imbalance of spin polarization at the Fermi level. The van der Waals (vdW) property of 2D magnets with atomically flat surfaces and negligible surface roughness greatly facilitates the development of MTJs, primarily in ferromagnets. Here, A‐type antiferromagnetism in 2D vdW single‐crystal (Fe0.8Co0.2)3GaTe2 is reported with TN ≈ 203 K in bulk and ≈ 185 K in 9‐nm nanosheets. The metallic nature and out‐of‐plane magnetic anisotropy make it a suitable candidate for MTJ electrodes. By constructing heterostructures based on (Fe0.8Co0.2)3GaTe2/WSe2/Fe3GaTe2, a large tunneling magnetoresistance (TMR) ratio of 180% at low temperature is obtained, with the TMR signal persisting at near‐room temperature 280 K. Furthermore, the TMR is tunable by the electric field, and the MTJ device operates stably with a low applied bias down to 1 mV (≈0.6 nA), highlighting its potential for energy‐efficient spintronic devices. This work opens up new opportunities for 2D antiferromagnetic spintronics and quantum devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

China Postdoctoral Science Foundation

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3