Exploring the Structural, Dynamic, and Functional Properties of Metal‐Organic Frameworks through Molecular Modeling

Author:

Formalik Filip12,Shi Kaihang13,Joodaki Faramarz1,Wang Xijun1,Snurr Randall Q.1ORCID

Affiliation:

1. Department of Chemical and Biological Engineering Northwestern University Evanston IL 60208 USA

2. Department of Micro Nano and Bioprocess Engineering Faculty of Chemistry Wroclaw University of Science and Technology 50‐370 Wroclaw Poland

3. Department of Chemical and Biological Engineering University at Buffalo, The State University of New York Buffalo NY 14260 USA

Abstract

AbstractThis review spotlights the role of atomic‐level modeling in research on metal‐organic frameworks (MOFs), especially the key methodologies of density functional theory (DFT), Monte Carlo (MC) simulations, and molecular dynamics (MD) simulations. The discussion focuses on how periodic and cluster‐based DFT calculations can provide novel insights into MOF properties, with a focus on predicting structural transformations, understanding thermodynamic properties and catalysis, and providing information or properties that are fed into classical simulations such as force field parameters or partial charges. Classical simulation methods, highlighting force field selection, databases of MOFs for high‐throughput screening, and the synergistic nature of MC and MD simulations, are described. By predicting equilibrium thermodynamic and dynamic properties, these methods offer a wide perspective on MOF behavior and mechanisms. Additionally, the incorporation of machine learning (ML) techniques into quantum and classical simulations is discussed. These methods can enhance accuracy, expedite simulation setup, reduce computational costs, as well as predict key parameters, optimize geometries, and estimate MOF stability. By charting the growth and promise of computational research in the MOF field, the aim is to provide insights and recommendations to facilitate the incorporation of computational modeling more broadly into MOF research.

Funder

National Science Foundation

Narodowa Agencja Wymiany Akademickiej

Directorate for Engineering

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3