Formation of Core‐Shell Ir@TiO2 Nanoparticles through Hydrogen Treatment as Acidic Oxygen Evolution Reaction Catalysts

Author:

Park Jihyeon1ORCID,Liu Eric1,Angizi Shayan1ORCID,Abdellah Ahmed1,Kirici Ecem Yelekli1ORCID,Higgins Drew1ORCID

Affiliation:

1. Department of Chemical Engineering McMaster University 1280 Main Street West Hamilton ON L8S 4L8 Canada

Abstract

AbstractThe transition to a sustainable energy economy requires the availability of renewably produced hydrogen through proton exchange membrane water electrolysis. The techno‐economic viability of this technology requires addressing materials challenges regarding the lack of active and stable catalysts for the electrochemical oxygen evolution reaction (OER) in acidic conditions. Herein, core‐shell iridium/titanium dioxide (Core‐shell Ir@TiO2) catalysts for acidic OER are synthesized through a polyol method to create TiO2 nanoparticles, followed by urea reduction with Ir, and subsequent annealing in hydrogen. The formation process of the core‐shell structure is observed through in situ environmental transmission electron microscopy under annealing conditions. Ir segregation occurred from an initially blended mixed metal oxide structure to a core‐shell configuration at 500 °C. Core‐shell Ir@TiO2 showed a three‐fold higher stability number (i.e., S‐number) than commercial IrOx (3.34 × 106 versus 1.02 × 106). Furthermore, an Ir‐mass normalized activity of 1,880 A gIr−1 at 1.7 V versus RHE is measured for Core‐shell Ir@TiO2, compared to 624 A gIr−1 for commercial IrOx. The developed synthetic route to prepare a composite structure with a TiO2 core and Ir‐based shell has enabled an Ir content reduction without a compromise in activity and stability, thus offering a promising avenue for developing next‐generation catalysts tailored for acidic water electrolysis.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3